Durable Self-Cleaning Coatings for Architectural Surfaces by Incorporation of TiO2 Nano-Particles into Hydroxyapatite Films

نویسندگان

  • Enrico Sassoni
  • Eros D'Amen
  • Norberto Roveri
  • George W Scherer
  • Elisa Franzoni
چکیده

To prevent soiling of marble exposed outdoors, the use of TiO₂ nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO₂ photoactivity. Here, we investigated the combination of nano-TiO₂ and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO₂ combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO₂ ("H+T"); (ii) simultaneous application by introducing nano-TiO₂ into the phosphate solution used to form HAP ("HT"). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. "H+T" and "HT" coatings exhibited much better resistance to nano-TiO₂ leaching by rain, compared to TiO₂ alone. In "H+T" samples, TiO₂ nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In "HT" samples, thanks to chemical bonds between nano-TiO₂ and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-cleaning antireflective optical coatings.

Low-cost antireflection coatings (ARCs) on large optical surfaces are an ingredient-technology for high-performance solar cells. While nanoporous thin films that meet the zero-reflectance conditions on transparent substrates can be cheaply manufactured, their suitability for outdoor applications is limited by the lack of robustness and cleanability. Here, we present a simple method for the manu...

متن کامل

Effect of Nano-TiO2 Particles on the Corrosion Behavior of Chromium-Based Coatings

Nanosized TiO2 particles were prepared by sol–gel method. The TiO2 particles were co-deposited with chromium using electrodeposition technique. In investigating of coating surfaces by scanning electron microscope (SEM), the results showed that the morphology of the coating surface was changed by adding TiO2 nanoparticles to the chromium coating. The corrosion behavior of the coatings was assess...

متن کامل

Effect of TiO2 nano-particles on corrosion behavior of Co-Cr alloy coatings in simulated body fluid

Co-Cr and Co-Cr/nano-TiO2 coatings were electrodeposited from Cr(III) based baths. The effect of TiO2 nano-particles incorporation on the morphology, structure, crystallite size, and preferred orientation was studied. Corrosion behavior of the composite coating was also investigated by means of polarization and electrochemical impedance spectroscopy techniques in Hanks’ si...

متن کامل

Self-Cleaning Measurement of Nano-Sized Photoactive TiO2

Titanium dioxide (TiO2)nanoparticles have been frequently employed in the environmental treatment and purification purposes as a cheap and highly efficient photocatalyst. A photocatalyst can facilitate the breakdown and removal of a variety of environmental pollutants at room temperature. TiO2 photocatalyst is the best candidatebecause of its strong oxidized ability, non-toxicity and longtherma...

متن کامل

On the Investigation of Sol-Gel TiO2 Nanostructured Films Applied on Windshields Pre-Coated with SiO2 Layer by Dip-Coating Method

TiO2-SiO2 photocatalytic nanostructure film on windshield for self-cleaning purposes was prepared via sol–gel dip-coating method. TiO2 films were prepared on automotive glass pre-coated with a SiO2 layer by a dip-coating method followed by annealing at 500 °C for 30min. The films were characterized using X-ray diffraction XRD and scanning electron microscopy SEM, FE-SEM techniques. The TiO2-SiO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018